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Using a coarse grained (16 x 33 x 8) numerical simulation, a lower bound on the 
Lyapunov dimension, D,, of the attractor underlying turbulent, periodic Poiseuille 
flow a t  a pressure-gradient Reynolds number of 3200 has been calculated to be 
approximately 352. These results were obtained on a spatial domain with streamwise 
and spanwise periods of 1.6q and correspond to a wall-unit Reynolds number of 80. 
Comparison of Lyapunov exponent spectra from this and a higher-resolution 
(16 x 33 x 16) simulation on the same domain shows these spectra to have a universal 
shape when properly scaled. Using these scaling properties, and a partial exponent 
spectrum from a still higher-resolution (32 x 33 x 32) simulation, we argue that the 
actual dimension of the attractor underlying motion on the given computational 
domain is approximately 780. The medium resolution calculation establishes this 
dimension as a strong lower bound on this computational domain, while the partial 
exponent spectrum calculated at  highest resolution provides some evidence that the 
attractor dimension in fully resolved turbulence is unlikely to be substantially larger. 
These calculations suggest that this periodic turbulent shear flow is deterministic 
chaos, and that a strange attractor does underly solutions to the NavierStokes 
equations in such flows. However, the magnitude of the dimension measured 
invalidates any notion that the global dynamics of such turbulence can be attributed 
to the interaction of a few degrees of freedom. Dynamical systems theory has 
provided the first measurement of the complexity of fully developed turbulence ; the 
answer has been found to be dauntingly high. 

1. Introduction 
Is the ‘ strange attractor ’ the underlying mathematical structure of fully developed 

turbulent shear flows ? Despite nearly a century of theoretical and experimental 
research into the origins and development of fluid turbulence, the explicit 
mathematical framework that connects the chaotic, time-dependent dynamics of 
real flows to the structure of the NavierStokes (NS) equations has only recently 
begun to emerge. Nonlinear dynamical systems theory has laid claim to the 
candidacy for this framework, primarily as a result of its discovery and definition of 
that mathematical object called a ‘strange attractor ’. Such objects represent the 
solutions to differential equations, and carry within their intrinsic structure a well- 
defined mechanism (usually called ‘ sensitive dependence on initial conditions ’) that 
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can produce chaotic and unpredictable behaviour in all physical systems, without 
requiring random forcing. In addition to conjecturing that the strange attractor 
connects the NS equations and turbulence, dynamical systems theory has made itself 
attractive by predicting that turbulence is describable, asymptotically, by a finite 
number of degrees of freedom, despite the NS equations being infinite-dimensional. 
This has encouraged hope that the turbulence problem can be reduced in apparent 
complexity by projecting it onto some special basis. The general notion that a 
complex flow can be decomposed into low-dimensional subunits couples easily to 
previous ideas about the importance of coherent structures, and has animated a 
number of recent studies. Several have expanded on Lumley’s (1981) suggestion that 
the Proper Orthogonal Decomposition, or Karhunen-Loe’ve procedure, is a rational 
way to extract such structures. Such an approach was used by Aubry et al. (1988), 
to characterize the near-wall dynamics in pipe flow, and by Sirovich & Rodriguez 
(1987) to obtain a low-dimensional description of chaotic solutions to the 
Ginzburg-Landau equation. In  the former study the resulting 10-dimensional 
system of ordinary differential equations for the structure amplitudes displays an 
intermittency phenomenon that may be the essential mathematical model of 
‘ bursting ’ in bounded shear flows. Moin & Moser (1989) performed the most complete 
such decomposition for Poiseuille flow, confirming that the most energetic 
‘characteristic eddy’ was an ejection straddled by a pair of weak streamwise 
vortices. Sirovich, Ball & Keefe (1990) interpreted the decomposition in terms of 
plane waves in Poiseuille flow and conjectured a Reynolds-stress production scenario 
in which weak, obliquely propagating modes trigger activity in the energetic non- 
propagating modes. Independently of this decomposition approach, Jiminez & Moin 
(1991) used the versatility of numerical simulations to isolate a ‘minimal’ flow unit 
in near-wall turbulence consisting of a single time-varying low-speed streak. In a 
broader functional setting there is increasing theoretical proof (see references in 
Foias et al. 1988) that the solutions of several well-studied partial differential 
evolution equations (the two-dimensional Navier-Stokes equations included) possess 
global attractors to which all solutions are attracted, and that in some cases, these 
attractors are embedded in finite dimensional inertial manifolds in function space. On 
such manifolds their dynamics are formally representable by finite systems of 
ordinary differential equations. This result has not been rigorously established for 
the three-dimensional Navier-Stokes equations, but some version of it is certainly 
suggested by the fact that two evolution equations (Kuramoto-Sivashinsky, 
Ginzburg-Landau) derived from the Navier-Stokes do have this property. 

The validity of dynamical systems theory as a descriptor of many supercritical 
fluid phenomena in BBnard convection and Taylor-Couette flow seems well 
established (Gollub & Benson 1980; Libchaber, Fauve & Laroche 1983; Gorman, 
Widmann & Robbins 1986; Moore et al. 1983; Busse 1981 ; Brandstater & Swinney 
1987). Most importantly, the concept that the complicated dynamics of these fluid 
systems are attributable to the interactions of a rather small number of degrees of 
freedom has been validated. 

Despite shear flow turbulence being regarded as the paradigm of chaos, dynamical 
systems theory has not yet found acceptance as the framework for turbulence in 
channels, jets, boundary layers, and wakes. In part this is because experimental 
verification has proven to be so much more difficult than in the BBnard and 
Taylor-Couette systems. In addition there remain substantial questions about the 
utility and descriptive power of the theory in situations where the flow is ‘open’ 
(convectively unstable) rather than ‘ closed ’ (absolutely unstable). BBnard con- 
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vection and Taylor-Couette flow are closed flows, and thus the global (collective) 
dynamics of the system are expressed at  all spatial locations. In this situation the 
notion of an attractor on which these global dynamics reside is easy to grasp, since 
its phase-space basis can be quickly linked to familiar eigenmodes. In developing 
flows, such as boundary layers, jets and wakes, our intuitive notions tell us that local 
measurements do not express the global dynamics of the system, and defining its 
degrees of freedom is a subtler matter. In fact, definition of the ‘system’ itself is 
problematic for such flows, since their spatial domain can be arbitrarily large. 
Whether the collective dynamics of such a flow can be expressed using the notion of 
attractor is certainly unclear. Recent work by Abergel (1990) provides a proof that 
solutions to the forced, two-dimensional Navier-Stokes equation on an infinite strip 
( - co , 00) X[O, L]  do possess a finite-dimensional, global attractor, if the forcing 
meets certain easily satisfied technical conditions. While there are technical problems 
to be overcome before this result can be extended to three-dimensional flows, it 
apparently encompasses the two-dimensional versions of jets, wakes, shear layers 
and boundary layers that are commonly studied and simulated. Thus there appears 
to be at least a theoretical basis for believing in the existence of attractors in 
developing flows. However, the practical aspects of defining their degrees of freedom, 
and thus the phase space in which their attractors are best envisioned, are 
undeveloped. This problem is eased, though not solved, by the realization that any 
real developing flow possesses a finite range of lengthscales, even if it is convenient 
to consider that it occurs on a semi-infinite domain. 

For fully developed turbulence, such as turbulent Poiseuille flow, the question of 
‘closed’ versus ‘open’, and that of describing its global dynamics has several 
subtleties. The label ‘fully developed ’ implies that all statistical characteristics of the 
flow (and thus any chaotic dynamics) are unchanging in the flow direction. Imagine 
examining the flow inside a box which spanned the channel, and extended some 
arbitrary, but fixed amount, in the stream and cross-stream direction. One would 
expect to measure the same statistics and flow dynamics in it regardless of its 
position within the fully developed region. This translational invariance means that 
the global dynamics of the flow in the box are accessible from any point in the box. 
As noted before, this is one of the characteristics of a closed flow. On the other hand, 
Poiseuille flow is known to be convectively unstable (Huerre & Monkewitz 1985), and 
is thus, strictly speaking, an open flow. Similarly, the periodicity assumed in our flow 
simulation mathematically closes the flow, since disturbances convected out of one 
end of the computational domain are immediately convected back in on the 
upstream side (Poiseuille flow on a torus). This is certainly not characteristic of the 
real flow even in a closed-return wind tunnel, but extensive comparisons between 
experiments and simulation show that the latter accurately reproduces statistics, 
structures, and dynamical events measured in real flows. Thus the dynamical 
differences between this fully developed open flow and its simulated periodic 
counterpart are very subtle, even though the latter maintains an artificial correlation 
between flow quantities through its periodicity. It is certainly true that the 
simulations here do not possess the same range of scales as a real flow, but this is a 
matter of computational mechanics, not physics. Real duct flows (as well as jets, 
shear layers, wakes and boundary layers) do have both large- and small-scale cutoffs. 
It is only just beyond current computational capabilities to fully simulate a 
rectangular duct flow corresponding to available low-Reynolds-number experiments. 
Such a simulation might employ Chebyshev collocation or finite differences in both 
spenwise directions and periodic functions in the streamwise directions ; thus it 
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would also be mathematically closed. Yet if current closed simulations with 
restricted scale ranges do an excellent job of predicting channel flow dynamics, how 
likely is it that a more complete simulation would do worse 1 

One concrete difference between a restricted-scale simulation and the real flow is 
the dimension of the underlying attractor. With scales restricted the attractor 
dimension in the simulation will be less than in the real flow. It has been repeatedly 
demonstrated in periodic simulations of the KuramotoSivashinsky equation 
(Manneville 1985) and the Ginzburg-Landau equation (Sirovich, Rodriguez & 
Knight 1990; Keefe 1989) that the attractor dimension is an extensive property of 
the (computational) system size. This means that while the dimension of the 
attractor asymptotes to some fixed number as spatial resolution on a fixed domain 
is increased, that  dimension would increase with system size provided the same high 
resolution were maintained on the new domain. Thus it is emphasized that the 
current results give the attractor dimension for periodic Poiseuille flow on a 
particular domain. Dividing by the streamwise and spanwise dimensions would then 
give a dimension per unit flow size that could be used to  estimate the full dimension 
of any simulation on a larger domain or of an experimentally measured duct flow at 
the same Reynolds number. Since real flows have finite sizes, this implies that the 
dimension of the underlying attractor would also be finite. 

It is in the context of the strong similarity between simulated and real Poiseuille 
flow, and the realization that the results must be scaled up to account for the larger, 
but finite domains of experiments, that we offer strong evidence that the 
mathematical structure of fully developed turbulence in a plane channel is 
characterized by an underlying strange attractor. At a single Reynolds number in 
turbulent channel flow we have determined a lower bound to the dimension, D,, of 
the underlying attractor on the given computational domain, having measured 
sufficient of the Lyapunov exponent hierarchy, hi, to calculate this quantity from the 
Kaplan-Yorke (Frederickson et al. 1983) definition : 

where A, + A 2  + . . . + A j  > 0 and A, + A 2  + . . . +A,+, < 0. This evidence is indirect in the 
sense that, while the existence of an attractor guarantees the existence of its 
Lyapunov exponents (Osledec 1968), calculation of a set of exponents using standard 
methods (Benettin et al. 1980) may not be the guarantee of an  underlying attractor 
(though we are at a loss to say what else there could be). Traditional methods of 
visualizing attractors (Poincar6 sections, maps) fail utterly for high-dimensional 
objects, so we have only the existence of a converged Lyapunov spectrum to infer the 
existence of an attractor. Such inference has been common in the past (Farmer 1982; 
Manneville 1985), and we employ it now. The Lyapunov exponents were calculated 
using standard methods (Benettin et al. 1980) except that  the vectors separating 
solution trajectories were calculated in the phase space of the base trajectory rather 
than in its tangent space. Thus, only the Navier-Stokes equations were integrated, 
not these equations and their variational form. This alternative approach, equivalent 
to the standard one provided that the separation vectors are sufficiently small, has 
been used successively in the past (Keefe 1985) to  determine the dimension of chaotic 
solutions to the Ginzburg-Landau equation, and was tested here over a range of 
separation vector sizes to  demonstrate this equivalence. 

There is previous work (Curry et al. 1984) in two- and three-dimensional 
simulations of BBnard convection showing that the asymptotic dynamics of such 
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simulations can be peculiarly sensitive to the spatial resolution of the calculation. 
There it was found that chaotic solutions at  low resolution sometimes disappeared 
altogether as resolution increased. Because of this we have spent considerable effort 
to demonstrate that this ‘return to order ’ does not occur in the turbulent channel, 
and that our coarse resolution results are a lower bound to the attractor dimension. 

Dimension studies in several different flows have appeared following an earlier 
report of the current work (Keefe, Moin & Kim 1990). Kolmogorov flow was studied 
by Platt, Sirovich & Fitzmaurice (1991), while Sirovich & Deane (1991) examined 
low-Rayleigh-number chaotic BBnard convection. Grappin & LBorat (1991) studied 
forced two- and three-dimensional turbulence without shear. High dimensions were 
estimated or calculated for attractors in these latter two studies, but none so large as 
found here. 

We first demonstrate the relative insensitivity of the Lyapunov spectra to changes 
in integration time step at fixed spatial resolution. What differences there are can be 
attributed to small changes in the total flow dissipation induced by discrete time 
integration. Next a calculation at increased spatial resolution shows that attractor 
dimension increases, but the Lyapunov exponent spectrum remains similar in shape 
when scaled by the number of non-negative exponents N ,  and the metric entropy 
hp (=  sum of positive exponents). Assuming this scaling and shape similarity 
continue to hold as resolution increases, a third, partial spectrum calculation at still 
higher resolution provides evidence that the attractor dimension undergoes no 
further substantial growth. 

Because dynamical systems theory predicts that the asymptotic behaviour of a 
dissipative dynamical system is confined to fewer degrees of freedom than needed to 
specify an initial condition, it has always been of interest to calculate the extent of 
this decrease. Calculating the dimension of the solution attractor supplies this 
information, for the dimension measures the number of degrees of freedom needed to 
characterize a point on the attractor in function space, and is a direct measure of the 
intrinsic complexity of the turbulence. Note that this complexity is quite different 
from the simpler spatial structure of turbulent fields that has been analysed in the 
context of multifractal sets by Meneveau & Sreenivasan (1987), and Prasad, 
Meneveau & Sreenivasan (1989). The context of that work is the Euclidean three- 
space of our daily experience, and thus all sets or objects there (such as the energy 
or scalar dissipation fields) require, at  most, three degrees of freedom (coordinates) 
to describe them. The context of the current work is a high-dimensional ( -  number 
of grid points x 2 independent velocity components) function space in which an 
entire three-dimensional flow field at an instant is represented by a single point. The 
evolution of turbulent Poiseuille flow in time sweeps out a trajectory in this function 
space, and the current study attempts to determine the dimensionality of the set of 
points in that space that the flow visits as time becomes large. 

Of the several definitions (Farmer, Ot t  & Yorke 1983; Grassberger & Procaccia 
1983) of dimension available, we have chosen to use the Kaplan-Yorke formula 
(which bounds the fractal dimension (Constantin & Foias 1985)), since we have access 
to the dynamical equations (the NS equations) of the system, and can calculate the 
Lyapunov exponent hierarchy directly. This is in contrast to the two previous 
attempts (Sieber 1987 ; Brandstater, Swinney & Chapman 1986) to calculate the 
dimension of attractors in Poiseuille flow, that employed methods (time delay 
attractor reconstruction, correlation dimension) most suited to data derived from 
experiments. These attempts failed, the investigators concluding that the dimension 
is greater than 10 or 40 respectively. Because our calculations indicate that the 
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dimension is at  least an order of magnitude greater than 40, we later argue that none 
of the ‘experimental ’ methods for measuring dimension can be expected to work on 
this problem, because the data required exceeds current computer capabilities. This 
is true whether the method is a variant of the ‘correlation’ dimension (Grassberger 
& Procaccia 1983), or is one of the newer techniques (Eckmann & Ruelle 1985; 
Broomhead & King 1986; Wolf et al. 1985) to calculate the Lyapunov exponents 
experimentally. 

2. The turbulent flow and its simulation 
The geometry of turbulent Poiseuille flow is shown in figure 1 .  The flow conditions 

for which the dimension was calculated correspond to a Reynolds number R,, based 
on constant pressure gradient (=  IVpIL3/2pv2, p = pressure, L = channel half-width, 
p = density, v = kinematic viscosity), of 3200. In wall units, this yields a Reynolds 
number Re, = u,L/v  = 80. This is below the value where the laminar parabolic flow 
becomes linearly unstable (R,  = 5772), and in the region (R,  x 2900) where it 
becomes unstable to finite-amplitude, two-dimensional disturbances. The major 
characteristics of the numerical method used to simulate the flow have been 
described by Kim, Moin & Moser (1987). It is spectral in all spatial directions, 
employing a complex exponential expansion in planes (z, z )  parallel t o  the channel 
wall, and a Chebyshev polynomial expansion in the direction normal (y) to the 
channel wall. The time advance is of mixed character, employing explicit stepping 
for the nonlinear terms in the NavierStokes equations, and an implicit scheme for 
the viscous terms. The explicit scheme is now a compact storage third-order 
RungeKutta method devised by A. Wray at NASA Ames (private communication), 
rather than second-order Adams-Bashforth, but the implicit algorithm remains 
Crank-Nicholson. 

Simulations were performed at  three successively finer resolutions (16 x 33 x 8,  
16 x 33 x 16, 32 x 33 x 32) on a spatial domain measuring 1 . 6 ~  x 2.0 x 1 . 6 ~  (x, y, z,  all 
lengths scaled by L ) .  Initial conditions for the coarse-grained simulation could be 
traced ultimately to spatially filtered versions of simulated fields at Re, = 180 from 
Kim et al. (1987). The asymptotic turbulent flow field was then established (before 
the exponent calculation began) by advancing the flow for a time tu,/L = 276.28. 
This corresponds to convection downstream at the mass-averaged velocity U, 
for lengths of 6163L. The exponent calculation, begun at  this point, continued 
until tu,/L = 344.52 (7685L). The flow simulation was further advanced until 
tu,/L = 497.74 (11 103L) to ensure that no unusual transients were contaminating 
the simulation, and that the central portion corresponding to the exponent cal- 
culation could be regarded as typical. The final condition of the coarse-grained 
simulation became the initial condition for the next higher resolution case 
(16 x 33 x 16). Starting from tu,/L = 0 the flow was advanced until tu,/L = 253.58 
(5080L), from which point the exponent calculation extended till tu,/L = 326.1 
(6535L). A total time advance of tu,/L =454.29 (9102L) marked the end of 
calculations at this resolution. This final state again became the initial state for the 
next higher resolution calculation (32 x 33 x 32). Starting from zero this flow 
developed until tu,/L = 242.44 (4850L), when exponent calculations extended until 
tu,/L = 250.42 (5010L). A total time advance of tu,/L = 391.41 (7830L) was achieved 
a t  this resolution. In each simulation we have gone to extraordinary lengths to 
ensure that the flow was in a statistically stationary state, all transients have died, 
and we are exponentially close to any attractor that may be there. The number of 
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FIQURE 1. The geometry of turbulent Poiseuille flow. 
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FIGURE 2. Near-wall velocity profiles Re, = 80. (a) 16 x 33 x 8 grid, (a) 16 x 33 x 16 grid. -, 
Upper wall ; --- , lower wall ; ---, law of the wall. Symbols are the data of Eckelmann 
(1974). 

convective lengthscales involved in each simulation exceeds by an order of magnitude 
that reported in any experimental work to date. 

The Reynolds numbers of the three flows (coarse, medium and high resolution) 
based on mass-averaged velocity and channel half-width were 1190, 1069, and 1067. 
They were definitely chaotic and provided reasonable profiles of mean velocity, 
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FIGURE 3. Stress distributions across the channel. (a )  16 x 33 x 8 grid, (6) 16 x 33 x 16 grid. -, 
uIvf ; ~-~ , ( l /Re)aU/ay-m;  --- , total stress distribution in fully developed channel. 
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FIGURE 4. Root-mean-square velocity fluctuations normalized by wall shear velocity. 
( a )  16 x 33 x 8 grid, (6) 16 x 33 x 16 grid. - 

3 u,,*; --- 1 arms; ~ - -  7 Wrms. 

Reynolds stress and turbulence intensity across the channel. Do such simulations 
adequately model ' true ' turbulence a t  these Reynolds numbers ? Unfortunately 
there are no experimental data to  compare to on turbulent channel flows in this low- 
Reynolds-number range, and the most accurate and well-resolved simulation (Kim 
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et al. 1987) is at a mass-averaged Reynolds number of 2800. In figures 2 4  we show 
near-wall velocity profiles, Reynolds and total stress distribution across the channel 
and intensity profiles for the coarse and medium resolution simulations. Despite the 
fact that law-of-the-wall behaviour is not necessarily to be expected a t  low Reynolds 
numbers, the simulations show something fairly close, and the agreement improves 
with increased resolution. The symbols in figure 2 are the data of Eckelmann (1974), 
as corrected by Kim et al. (1987). The total stress distribution ( l / R e ) a U / a y - a  is 
linear from wall to wall in all simulations, though the peak of the Reynolds stress 
curve gets slightly larger and closer to the wall as resolution increases. Turbulent 
intensity profiles show the widest variation. Spanwise (w’) and normal (w’) 
fluctuations have the shape, though not the amplitude, of those found at higher 
Reynolds numbers, while longitudinal fluctuations (u’) peak in the region 
15 < y+( = u,y/v)  < 20 and have both the amplitude and shape expected. 

Representative streamwise and spanwise wavenumber spectra at y+ = 13.5 are 
shown in figures 5 and 6 for the lowest- and medium-resolution calculations. The 
primary differences are in the spanwise (k,) spectra. These increase in amplitude with 
wavenumber at the lowest resolution, but peak and begin to fall off at the medium 
resolution. In the highest-resolution simulation the fall off simply extends to higher 
wavenumbers. 

Grappin & LBorat (1991) have questioned whether simulations a t  even the highest 
resolution used here can be sufficiently dissipative for the dynamics, and thus the 
Lyapunov exponents and dimension, to be correct. We would have to agree that the 
lowest-resolution calculation does suffer from the lack of dissipation in spanwise 
motions. The resulting flow is too energetic. However, the first increase in spanwise 
resolution seems to go a long way towards correcting this problem. The mass- 
averaged velocity drops 10 YO with the first doubling of spanwise resolution, but 
remains unchanged by further resolution increases in both streamwise and spanwise 
directions. Note also that turbulent intensity profiles decrease in peak amplitude 
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FIQURE 6. (a) Streamwise and (b) spanwise wavenumber spectra at y+ = 13.5, 16 x 33 x 8 grid. 
> w. , u ;  ---, v ;  _ _ _ ~  

much more with the first resolution increase than with the next. At medium 
resolution the grid spacing in terms of wall units was Axi = 25.2 = Az+. The highest- 
resolution simulation halves these numbers to 12.6. These latter spacings are very 
similar to  those found in the simulation of Kim et aE. (1987), where all essential scales 
of motion were resolved (and this a t  a higher Reynolds number (Re ,  = 180) than 
calculated here). What the current simulations lack are low, not high, wavenumber 
content, and this is unlikely to manifest itself as a lack of dissipation. The evidence 
suggests that  the initial increase in spanwise resolution brings the simulation close to 
the asymptotic high-resolution flow and that some of the bulk flow quantities have 
already reached it. Rozhdestvensky & Simakin (1984) found similarly good bulk 
properties with low-resolution simulations in this same Reynolds-number range. 
None of these simulations may be ‘true’ turbulence, but the deviations from this 
state a t  medium and highest resolution seem unlikely to  be important qualifications 
to the calculated Lyapunov exponents and attractor dimensions. 

3. Lyapunov exponent calculation technique, and a test case 
3.1. L yapunov exponents 

The Lyapunov exponents and vectors of a dynamical system measure the local 
expansion or contraction (exponents) of phase-space volume along particular 
directions (vectors) near the solution attractor of such a system. Consider a 
dynamical system in RN 

dX 
- dt = f(x), X € R N  

and write its solution for a particular initial condition X(0) = Xo 
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The behaviour of infinitesimal perturbations SX(t) may be studied through the 
assumption 

and linearization of (3.1) about $,(X,). This yields 
(3.3) 

(3.4) 

where Of[  3 denotes the Jacobian matrix [afi/axj], evaluated along the original 
trajectory $t(X,).  Write the solution of this non-autonomous system (3.4) for a 
particular initial condition SX(0) = SX, as 

SX(t) = d$F(SX,). (3.5) 
Thus SX, is the initial separation vector between two nearby solution trajectories of 
the dynamical system (3.1) and H ( t )  is their time varying separation. 

Instead of one separation vector SX,, consider p independent initial separation 
vectors v, 6,. . . Vp chosen around X, with 1 < p d N .  They define a p-dimensional 
parallelepiped in the p-dimensional subspace EP of RN.  Call Vol,( v, G, 4.. . V,) the 
p-dimensional volume of this parallelepiped. Under suitable assumptions (Benettin 
et al. 1980), one can define the p-dimensional Lyapunov exponents 

The d$t( Q, etc. are the sides of the evolved parallelepiped. Ap(X,) represents the 
average expansion or contraction rate of infinitesimal p-volume near the solution 
attractor. Thus A' describes the average behaviour of lengths, A2 the behaviour of 
areas, etc. For most chaotic attractors the A P  are independent of X,. 

The one-dimensional Lyapunov exponents hi are defined by 

(3.7) 

One generally speaks of the hi as the Lyapunov exponents of the system. They 
represent the average rate of expansion or contraction of lengths along a time- 
varying, but mutually orthogonal set of directions in the phase space near the 
attractor. These directions, called Lyapunov vectors, are not known a priori, but are 
themselves calculated on a time-varying basis as a precursor to determining the 
exponents. Their spatial form carries the structural information describing the kinds 
of perturbations to which a flow is most sensitive. Vastano & Moser (1991) have 
examined the first few Lyapunov vectors in Taylor-Couette flow near its transition 
to chaos, and shown how this transition stems from the instability of outflow jets 
produced by pairs of wavy vortices just below the transition. 

The analogy between Lyapunov exponents and their associated vectors, and the 
eigenvalues and eigenmodes of stability theory should be apparent. However, it is 
only an analogy ; Lyapunov exponents and vectors are not rigorous time-varying 
generalizations of the eigenvalues and eigenvectors of even an undynumical system 
(dX/dt = 0 in (3.1)). In  this case (3.4) describes perturbations to a fixed point(a 
steady solution to the Navier-Stokes equation, say). The Jacobian matrix Of[ ] is 
steady, and the usual normal mode analysis of this problem (e.g. for parallel flows, 
the Orr-Sommerfeld equation) is solved by determining the eigenvalues and 
eigenvectors of Of[ 1. The eigenvalues of such an analysis have both an exponential 
and a fluctuating part. However, by definition, Lyapunov exponents measure 
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average growth or decay, not fluctuation. For steady flows the Lyapunov vectors 
and eigenmodes coincide, and it is apparent that in any long-time average of 
perturbative behaviour along such directions, the dependence on the fluctuating part 
of the eigenvalue disappears. In  this special case the Lyapunov exponents equal the 
non-fluctuating parts of the eigenvalues of the Jacobian matrix (we are ignoring the 
case of eigenvalues of multiplicity greater than one). This fact can be used (Keefe 
1985) to test the general validity of numerical techniques developed to determine the 
exponents of a particular dynamical system. Stability eigenvalues can be calculated 
by means independent of the Lyapunov exponent algorithm described below, thus an 
independent check of the exponents and vectors is possible. An alternative way to 
check an exponent calculation requires that the total dissipation of the dynamical 
system be known, and that the entire exponent spectrum be calculated. Then the 
sum of all the exponents should equal the total dissipation. In  the case of the Lorenz 
equations the dissipation is known analytically, and this fact was used by Shimada 
& Nagashima (1979) to check their calculation of the dimension of the attractor for 
that system. I n  a similar fashion Yamada & Ohkitani (1988) were able to check their 
dimension results for a large system of equations derived from the Navier-Stokes 
equation, because here also the dissipation was known analytically. For direct 
simulation of Navier-Stokes turbulence this technique has limited usefulness, for an 
independent calculation of the dissipation is usually not available, nor is it usually 
possible to  calculate all the exponents of even a coarse-grained simulation. The 
exception is integration of the forced Euler equations, for in this case the dissipation 
is zero and extremely coarse-grained simulations display chaotic behaviour. Grappin 
& LBorat (1991) used this device to check their exponent algorithm, later applied to  
forced incompressible NavierStokes turbulence. 

The dissipation test, along with the stability technique employed here, provides 
only an algorithmic check ; when dealing with discrete time integration there is an 
additional complication. Faced with a system of unknown dissipation, a good 
algorithm can be expected to  estimate exponents consistent with that dissipation. 
But the dissipation of a discretely integrated dynamical system varies with the time 
step used, and so also do the estimated exponents and dimension. This phenomenon 
was found in the current simulations; we will later use the Lorenz system to 
demonstrate it analytically and to quantify its magnitude. 

The basic details of the method employed to calculate the Lyapunov exponents of 
Poiseuille flow can be found in Shimada & Nagashima (1979) or Benettin et al. (1980). 
For a more expository description see Grappin & LBorat (1991) and Sirovich & Deane 
(1991). To compute M exponents the evolution of M initially orthogonal 
perturbations from the basic flow are followed for a short time and then 
reorthogonalized using a modified Gram-Schmidt procedure. At the time of 
reorthogonalization the relative exponential growth or decrease of the perturbations 
with respect to their initial amplitude is measured. Then the amplitudes of the new 
orthogonal ensemble of perturbations are normalized to  some initial value and their 
evolution followed again. At each orthogonalization a local value of growth or decay 
exponent is recorded for each perturbation. When all the local values, for a given 
perturbation vector, are averaged after many orthogonalizations, the result is a 
Lyapunov exponent. The set of such numbers from all the perturbations is called the 
Lyapunov spectrum. 

There are two different ways to  follow perturbations of a dynamical system. The 
first way is to derive the variational equations of the system, and then advance unity 
norm perturbations under its influence, calculating the system coefficients from the 
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Mode no. n 

1 0 
2 0 
3 0 
4 1 
5 0 
6 1 
7 0 
8 0 
9 0 

10 0 
11 2 
12 1 
13 2 
14 0 
15 0 
16 3 
17 2 
18 3 
19 1 
20 1 
21 4 
22 0 
23 0 

m 

0 
1 
2 
0 
1 
1 
0 
2 
1 
3 
0 
2 
1 
2 
3 
0 
2 
1 
2 
3 
0 
4 
3 

Wi 

-0.0725706 
-0.101 9823 
-0.1902177 
-0.252 1302 
-0.2739335 
-0.281 541 9 
-0.290 282 5 
-0.2986788 
-0.319 6942 
-0.3372765 
-0.3609015 
-0.3697772 
-0.3903133 
- 0.407 929 5 
-0.4080372 
- 0.449 558 3 
- 0.478 548 6 
-0.4789700 
-0.5070494 
-0.516 8360 
-0.52941 1 4 
-0.5431589 
-0.554988 3 

0, 

0 
0 
0 
4.00046 
0 
4.00046 
0 
0 
0 
0 
8.146 4 
4.00046 
8.1464 
0 
0 

12.3169 
8.1464 

12.3169 
27.9369 

16.4999 
4.00046 

0 
0 

Mode type 

EH 
ES 
ES 
ES 
ETS 
ES 
OH 
ETS 
0s 
ES 
ES 
ES 
ES 
0s 
ETS 
ES 
ES 
ES 
ETS 
ES 
ES 
ES 
0s 

TABLE 1 .  Stability eigenvalues from OrrSommerfeld analysis at R ,  = 578 (Re, = 34). The final 
column refers to the type of mode and its symmetry across the channel: H, Heat; TS, 
Tollmien-Schlicting ; S, Squire; E, even ; 0. odd. 

time-varying state of the basic flow. In  the second way the evolution of perturbations 
is constructed from monitoring the evolution of a family of initial conditions near the 
basic flow. The latter technique will provide the same answers as the former provided 
the initial separations between members of the family are small enough to make 
calculating neighbouring trajectories a good approximation to linearization. We 
have chosen the second approach, because i t  seemed to provide a slightly less 
complex implementation in programming. The core of the algorithm was a flow 
solver written to perform full numerical simulation of low-Reynolds-number channel 
flow (Kim et al. 1987). It has been tested and used extensively, demonstrating an 
ability not only to reproduce experimental results, but to go beyond them in 
elucidating flow features not easily investigated in experiments. I n  hindsight the 
perceived complexity of the other technique was probably more imagined than real, 
and it is to be preferred from the standpoint of round-off errors associated with small 
differences between large numbers. However, the exponent results presented in the 
remainder of the paper have been tested for independence with respect to changes in 
perturbation magnitude from 0.001 to 0.01. As the next subsection shows, this 
magnitude range produces exponents in excellent agreement with stability exponents 
calculated by solution of the OrrSommerfeld equation a t  a subcritical Reynolds 
number of R, = 578. 

3.2. Test case ; Poiseuille Jlow at R ,  = 578 (Re, = 34) 
The stability of laminar Poiseuille flow has been extensively documented by 
numerical means. Its linear instability occurs at R,  = 5772 (Orszag 1971), while the 
work of Herbert (1977) and others shows it stable to finite two-dimensional 
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disturbances for R, < 2800. Rozhdestvensky & Simakin (1984) claim that the flow is 
nonlinearly stable to three-dimensional disturbances for R ,  < 2100. Our own 
numerical simulations suggest that the three-dimensional nonlinear stability limit is 
closer to R, = 2300. However, there can be no doubt that the flow is completely 
stable a t  R, = 578 (Re, = 34) where we have conducted a test of the Lyapunov 
exponent algorithm. 

The full temporal linear instability equations for Poiseuille flow were solved using 
the Chebyshev tau method. Perturbation eigenfunctions 

f,(Y) (u,(z, Y, 27 t )  = f,(Y) exp (inax + W Z -  i 4 )  

were expanded in the first 45 Chebyshev polynomials and the resulting eigenvalue 
problem for the complex frequency o = w, + io, solved by the IMSL routine EIGCC. 
The computational domain had fundamental streamwise and spanwise wavenumbers 
of u = 0.25 and /3 = 1 respectively. The algorithm calculates both Tollmien- 
Schlicting waves and Squire modes and orders them from least to most stable. The 
first 23 eigenvalues are listed in table 1 along with the two ‘heat conduction ’ modes 
(n  = m = 0) whose analytically calculated decay rates (a, = -Z2x2/4Re,) fall within 
the hierarchy. All frequencies and growth rates are presented in terms of the non- 
dimensional time tu,/L. To obtain rates based on centreline velocity scaling these 
results should be divided by (Pe,):. It can be seen that a heat mode is the least stable, 
followed by two spanwise-propagating Squire modes. The least-stable streamwise- 
propagating TS wave is nineteenth in the hierarchy. These results are invariant to six 
decimal places for expansion of the eigenfunctions into 30 or more Chebyshev 
polynomials. 

The exponent test calculation was conducted on a 16 x 33 x 16 grid distributed 
within a computational domain 87c x 2x in the streamwise and spanwise directions. 
The attractor, or central trajectory, whose exponents were calculated was steady, 
laminar Poiseuille flow U(y) = (Re,/2) (1 -y2). The initial set of 60 mutually 
orthogonal vectors of magnitude e = 0.001 separating the fixed point from the other 
initial conditions was produced by a random number generator. The ortho- 
normalization interval was set to Atu,/L = 0.05. There is a considerable transient 
period during which the entire ensemble of separations relaxes toward its asymptotic 
state. The variation of the local exponent values during this period can be included 
in the long-time averages, but this markedly decreases their convergence rate. It is 
better to ignore variations during the transient period and only begin averaging 
when the separation vectors have reached their asymptotic orientation. The averages 
then converge very rapidly. Modes with w, = 0 (no fluctuation, just decay) can be 
used to determine the end of the transient. When this point is reached the local 
exponent values will be unchanging from interval to interval. For the test case, mode 
23 of table 1, an odd Squire mode with three spanwise wavelengths, was used for this 
purpose. 

The first 60 Lyapunov exponents of laminar Poiseuille flow at R ,  = 578 are 
presented in table 2. Both the magnitude and ordering of exponents can be checked 
by comparison to the column headed o, in table 1. The multiplicity with which a 
given exponent appears depends on the mode obliquity and possible &c phase shifts 
in space. Such multiplicity does not reflect any multiplicity in the OrrSommerfeld 
eigenvalue problem. For oblique modes there are four mutually orthogonal 
disturbances with the same exponent. They are any two waves with a2 = a,, p2 = 
and a ix phase shift between them along the wave vector, and any two waves a2 = al, 
p2 = -PI with an arbitrary phase shift between them. Spanwise (n = 0) or stream- 
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Index, i A, 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

-0.0725706 
-0.0725706 
-0.101 9824 
-0.1019824 
-0.1902177 
-0.190217 7 
-0.252 1495 
-0.252 1495 
-0.273 9335 
-0.273 9335 
-0.2815625 
-0.2815625 
-0.281 5627 
-0.2815626 
-0.290 374 7 
-0.2932270 
-0.2957793 
-0.298541 6 
-0.3196944 
- 0.319 695 6 
-0.337 2752 
-0.337 2765 
-0.361 1437 
-0.361 1486 
-0.3697908 
- 0.369 802 5 
- 0.369 802 1 
- 0.369 802 3 
- 0.390 557 3 
- 0.390 557 6 

Mode no. Index, i A, 
1 31 
1 32 
2 33 
2 34 
3 35 
3 36 
4 37 
4 38 
5 39 
5 40 
6 41 
6 42 
6 43 
6 44 
7 45 
7 46 
8 47 
8 48 
9 49 
9 50 

10 51 
10 52 
11 53 
11 54 
12 55 
12 56 
12 57 
12 58 
13 59 
13 60 

- 0.390551 4 
- 0.390557 5 
-0.408037 2 
-0.4080373 
- 0.407 929 7 
- 0.407 929 7 
- 0.450 682 8 
- 0.450 682 8 
-0.4788416 
-0.479 7154 
-0.4788354 
- 0.478 9766 
-0.479545 3 
-0.4800679 
-0.4196223 
-0.4800910 
- 0.507 050 6 
-0.5070504 
-0.507 0506 
-0.5070504 
-0.5168686 
- 0.516 868 6 
-0.516 8688 
-0.516 8687 
-0.532 8953 
- 0.543 081 8 
- 0.532 918 1 
-0.543 117 3 
- 0.554 993 6 
- 0.554 9944 

TABLE 2. First 60 Lyapunov exponents at R ,  = 578 (Re, = 34) 

Mode no. 

13 
13 
15 
15 
14 
14 
16 
16 
17 
17 
17 
17 
18 
18 
18 
18 
19 
19 
19 
19 
20 
20 
20 
20 
21 
22 
21 
22 
23 
23 

wise (m = 0) modes are characterized by double exponents. They correspond to a 
wave and its in-shifted image. The heat modes are special cases (n = m = 0). Here u 
and w independently satisfy the same diffusion equation. Thus one mode has u and 
not w, and the other has w and not u. 

The general agreement between exponent values predicted by the Orr-Sommerfeld 
equation and the exponent algorithm is very good. The worst error in value is 1.01 % 
(for the second heat mode), multiplicities are correct, and there are only slight 
anomalies in ordering (Mode 15 before Mode 14, Mode 21 and Mode 22 interleaved) 
which occur when the predicted values of two exponents are very close to each other. 
The agreement between values often extends to four or more decimal places. Thus 
the comparison test gives us a high level of confidence in the Lyapunov exponent 
spectra of turbulent Poiseuille flow described in the next section. Errors of value and 
ordering such as found in the test case will have negligible effect on the shape of these 
spectra, as well as the value of dimension calculated from them using (l.l),  the 
Kaplan-Yorke formula. 
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4. Lyapunov spectra and the dimension of the attractor 
Four different Lyapunov exponent spectra were calculated for turbulent Poiseuille 

flow at  R, = 3200. The first two used the same coarse-grained spatial resolution 
(16 x 33 x 8 ) ,  but different time steps (AtuJL = 0.0015, 0.003) to integrate the 
Navier-Stokes equations. From both of these calculations sufficient of the Lyapunov 
spectrum was obtained to directly calculate the dimension of the underlying 
attractor using the Kaplan-Yorke formula. The remaining two exponent spectra 
were obtained at successively finer spatial resolutions (16 x 33 x 16, 32 x 33 x 32 )  to 
investigate the dependence of the attractor dimension on resolved scale. Because of 
the increased computational effort involved, less of the spectra were obtained in 
these cases from the available computer resources. However, the results from the 
medium-resolution calculation were sufficient to confirm a scaling relation amongst 
spectra at different resolutions that allowed attractor dimension to be estimated a t  
this and the most highly resolved flow condition. The overall result is simply stated : 
for the given computational domain and Reynolds number, a lower bound to the 
dimension of the underlying attractor was calculated to be D, = 352 ; doubling the 
spanwise resolution caused the estimated dimension to rise to D, w 780. The evidence 
suggests that a further doubling of both spanwise and streamwise resolution leaves 
this estimated dimension unchanged. However, this last statement must be hedged 
about by qualifiers, owing to  the relatively small segment of the spectrum that could 
be calculated. We conclude the D, w 780 is a lower bound to  the dimension of the 
strange attractor underlying turbulent Poiseuille flow on the given computational 
domain, and that there is evidence to support the contention that its asymptotic 
value for fully resolved turbulence is not substantially larger. Details of the 
individual calculations follow. 

4.1. Coarse-grained spatial resolution 
Two exponent spectra, differing only by the integration time step AtuJL used to 
obtain them, were calculated at the 16 x 33 x 8 resolution. The primary results are 
displayed in figure 7,  where the values of the Lyapunov exponents A, are plotted 
against their index i. For simulation a t  each time step the first 450 exponents were 
calculated, at a total cost of some 800 h of cpu time on a CRAY-2. Application 
of the Kaplan-Yorke formula to each distribution yields dimension estimates of 
D, - 352 (AtuJL = 0.0015) and D, - 308 (AtuJL = 0.003). The number of positive 
exponents is 166 and 142 respectively, and the metric entropies associated with these 
positive exponents are h,, - 90 and h,, - 70. The exponents with the higher indices 
converge most rapidly, and a strategy which averages the low-index exponents close 
to  convergence, before adding additional trajectories to the ensemble to  calculate the 
high-index exponents, makes most efficient use of computational time. After initial 
transients the first 63 exponents of the AtuJL = 0.0015 (0.003) case were averaged 
for timescales corresponding to convection over 1427L ( 1  359L). Exponents 64-250 
were obtained from averages over the latter 730L (541L) of this period, exponents 
251450 from averages over the latter 470L (3381;). Despite these long averaging 
times the exponent values are not strictly decreasing, and some small non- 
uniformities continue to  persist a t  the boundaries between the averaging groups. 
These departures from ideal spectra have negligible effect on the dimension 
estimates. 

Though the computational grid is 1 6 x 3 3 ~ 8 ,  and there are three velocity 
components at each node, particular features of the flow solver reduce the free nodes 
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FIQURE 7 .  Distribution of Lyapunov exponents, A, for coarse-grained simulations of turbulent 
Poiseuille flow. 0,  Time step 0.0015; V, time step 0.003. 

to 15 x 33 x 7, and incompressibility of the flow means that only two of the velocity 
components are independent ; thus there are 15 x 33 x 7 = 6390 degrees of freedom in 
the calculation, and the estimated dimensions are roughly 4-5 % of the dimension of 
the complete phase space. 

The simple fact that converged exponent spectra were obtained which yield 
dimension estimates substantially less than that of the phase space is strong evidence 
that an attractor (‘strange ’, because there are positive exponents) underlies fluid 
motion on this computational domain. Coarsely resolved shear turbulence at this 
Reynolds number is describable, at  least theoretically, by a finite number of degrees 
of freedom. However, this number is large enough to invalidate any notion that the 
global dynamics of this turbulent flow can be attributed to the interaction of a ‘few’ 
degrees of freedom. 

The calculation of spectra a t  two different time steps for this spatial resolution was 
undertaken to determine the sensitivity of the spectra to such changes. Contrary to 
initial expectation, small differences did appear. Choice of a time step for integration 
in any particular turbulence simulation depends upon a combination of perceived 
algorithm stability limits and desired accuracy. However, because of the general 
complexity of such calculations, larger time steps are more likely to be chosen so that 
the maximum ‘flow time ’ is obtained from the computational resources. In addition, 
the usually calculated means and second-order statistics of such simulations are 
frequently insensitive to time step changes over substantial ranges. This is certainly 
true here, where no significant or systematic differences between statistics of an 
individual AtuJL = 0.003 simulation and those for the AtuJL = 0.0015 case, 
partially displayed in $2, were detectable. There seems no reason under such 
circumstances to choose smaller steps. There is even less reason to choose smaller 
steps in an exponent calculation, given that many simultaneous simulations are 



18 L .  Keefe, P. Moin and J .  Kim 

being performed, and computational resources are finite. However, as is obvious 
from figure 7,  small but persistent differences between the Lyapunov exponent 
spectra of the two different time integrations were found. Some small part of them 
can be attributed to  lack of convergence over these averaging times. In figure 8 the 
time history of the running average of A,, the first exponent calculated in each 
spectrum, is shown for integrations some six times longer than used to obtain 
exponents 1-63 in figure 7. While the difference between these two values does 
decrease, they remain distinct after averaging times corresponding to convection 
over 7435L. Though integration a t  a larger time step may be regarded as a sort of 
filter on possible dynamics, power spectra from the two flows have few differences a t  
high or low frequencies. 

The explanation for the majority of these differences lies in the fact that the total 
dissipation of a discretely integrated dynamical system varies with the time step 
employed and that the dimension of the attractor is a sensitive indicator of this. The 
integration scheme maps the flow field a t  one instant to that Atu,/L later. Changing 
At changes the discrete dissipation of this map. From the lack of variation in 
statistics i t  must be that substantially the same set of flow states is visited by the 
different integrations and with the same probability. However, the order in which 
these states is visited changes with different time steps. The Lyapunov exponents are 
a statistic characteristic of the change of the solution rather than the solution itself; 
perhaps then it is not surprising that a doubling of time step produces some change 
in exponent values. Just  as many processes can have the same probability density 
with wildly differing dynamics, so also two flows with similar Reynolds stress 
distribution could have different Lyapunov exponents. Lyapunov exponents are 
statistics on the change from one flow state to the next; stress distributions are 
statistics on all the flow states visited, regardless of the order. 

These effects can be demonstrated analytically using the Lorenz equations : 

1 x = a(Y-X) ,  

Y = p X - Y - X Z ,  

Z = - p Z + X Y .  ) 
The total dissipation E per unit time of this system (equal to the trace of the Jacobian 
of (4.1)) is fixed at  - (a+P+l) .  Use of the forward Euler scheme on this system 
produces a three-dimensional map whose Jacobian is 

O I  (4.2) 

1 - VAt uAt 
J =  ( p - 2 , ) A t  ( 1 - A t )  -X ,A t  . [ Y,At  X ,  At ( 1  -PAt) 

For a map the product of the eigenvalues of its Jacobian gives the net volumetric 
change per iteration, and the natural logarithm of the volumetric change, divided by 
At, gives the effective dissipation of the discrete dynamical system. Conveniently, the 
product of the eigenvalues turns out to be the determinant of J, or 

det [J1= 1 - (r +P+ 1) At + [r( 1 - P - p  + 2,) + P + X : ]  At2 

+ ~ A ~ ~ [ P ( ~ - Z , - ~ ) - X , ( X , + Y , ) I ,  (4.3) 

Expanding the logarithm of (4 .3 )  for arguments near unity one finds that 

8 = - ( a + P + l ) + O ( [ Z , ,  X : ] A t ) + O ( [ X , ,  Y,, 2 , ] A t 2 ) .  (4.4) 
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FIGURE 8. Time history of A, for two different integration time steps: 

, 0.0015; -*-, 0.003. 

Time step Averaging Dissipation, Exponent 
At time theory sum 

0.001 1000 - 13.701 43 - 13.701 45 
0.002 1000 - 13.73484 -13.73456 
0.005 1000 - 13.83049 - 13.828 10 
0.01 1000 - 13.95553 - 13.94904 
0.02 1000 - 14.37942 - 14.402 33 
0.023 1150 - 14.47807 - 14.54856 

TABLE 3. Comparison of discrete dissipation and sum of Lyapunov exponents for the Lorenz 
equations integrated using forward Euler. p = 28, E = -(r+/3+ 1 )  = -41/3 = -13.666666... 

As expected the discrete dissipation equals the analytic value when At approaches 
zero, but for realistic values of At below the stability limit of the integration scheme, 
6 varies macroscopically because X,, etc. can be much larger than one. This can be 
seen in table 3, where the averaged discrete dissipation of the Lorenz system, 
integrated using forward Euler, is compared against the sum of its calculated 
exponents as At is varied. Note that the exponents in this calculation were obtained 
with the same technique as the channel flow calculation: the variational equations 
were not integrated, but rather a family of nearby initial conditions in phase space. 
This table confirms the earlier statement that a good algorithm estimates exponents 
consistent with the dissipation of the system, but that dissipation varies with 
integration time step. 

The actual time integration scheme used to integrate the Navier-Stokes equations 
was more complicated, and more accurate, than forward Euler. At  each of three 
substeps the nonlinear terms were advanced similar to forward Euler, while the 
viscous terms were advanced implicitly using Crank-Nicholson. The Lorenz system 
was also integrated using this scheme and the sum of its exponents calculated as At 
was varied. Table 4 displays the results. The higher accuracy of the scheme is 
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Time step 
At 

0.001 
0.002 
0.005 
0.01 
0.02 
0.023 
0.05 

Averaging 
time 

1000 
1000 
1000 
1000 
1000 
1150 
1000 

Exponent 
sum 

- 13.66696 
- 13.667 54 
- 13.671 80 
- 13.687 98 
- 13.76029 
- 13.792 34 
- 14.406 25 

TABLE 4. Sum of Lyapunov exponents for the Lorenz equations integrated with Runge- 
Kutta-Wray/Crank-Nicholson scheme. p = 28, 6 = -((r+/3= 1 )  = -41.3 = - 13.666666 ... 

reflected in the decreased variation of the calculated sum ; here only a 1 % variation 
in dissipation occurs within what would be the linearly stable range of the explicit 
advance, while 5% occurs for larger but implicitly stable At. 

The effects of a dissipation change on the calculated dimension can be derived from 
a simple model. The Lyapunov exponent distribution is discrete : 

A ,  = Al-b(n-l)r, A,,b,r > 0, n = 1 , 2 , 3  ..., (4.5) 

but for analytic ease consider n continuous. The exponent r lies in the range t < r < 8 
in our channel flow calculations. Now define a summation (integration) function 

b(M- l)r+l 
S(M) = A,  dn = A,(&!- 1) - R r + l  

Then the Lyapunov dimension, D,, and the total dissipation E (for a system with Q 
exponents) are defined by 

S(D,) = 0, S(Q) = € 9  (4.7a, b) 

Solve ( 4 . 7 ~ )  for a relation between D, and A, (D, B 1 ) :  

and logarithmically differentiate with respect to A, ( r ,  b constant) to obtain 

d D A  = 
D, r A , '  

(4.9) 

In a similar fashion, for Q 9 1 ,  write (4.7b) as a relation between 8 and A, and 
logarithmically differentiate to obtain 

(4.10) 

Combining (4.9) and (4.10, using the experimental spectrum for values of A J b ,  and 
assuming Q = 6930 and + < r < 8 gives that 

ds dD, 
[-8.85, -6.81 x-=-. 

E D, 
(4.11) 

Thus within the spectrum shape assumption of the model, small changes in the 
dissipation express themselves as amplified variations of A, and still greater variation 
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of the dimension D,. When r = f a 1 YO change in E causes a 5.9% change in A, and 
a 8.85% change in D,. Working backwards from the calculated dimensions of 352 
and 308, this 12.5% decrease when the time step doubled could easily result from 
only a 1.5 % change in dissipation. We emphasize that an exponent and dimension 
calculation are peculiarly sensitive to these effects of global dissipation change and 
that none of the usual turbulence statistics are affected. 

In addition to revealing the asymptotic differences between the two spectra a t  
different time steps figure 8 illustrates the slow convergence of the low-indexed 
exponents. In a theoretical analysis of the general behaviour of Lyapunov exponents 
in finite-dimensional systems, Goldhirsch, Sulem & Orszag (1987), argued that a t-' 
convergence to the average was to be expected. Such behaviour was confirmed to 
occur in several low-order dynamical systems (Lorenz, Mackay-Glass, Rabinovich- 
Fabrikant, Curry, Knobloch-Weiss) and a method for extrapolation of these running 
averages to t = 00 suggested and successfully demonstrated as a way to decrease total 
calculation time. No similar reduction in calculation time was achieved by applying 
this technique here. The method consists of obtaining a least-squares fit of an 
exponent's running average to an expression of the form h,(t) = b, + (al/ t) .  The value 
of 6,  obtained from the fit is the asymptotic value of the exponent. In  our calculations 
the length of low-index-exponent time history required to obtain a stable estimate 
of the bi differed little from the time needed for the exponent to converge. For the 
high-index exponents convergence of the average was so rapid that extrapolation 
was unnecessary. Similar problems in extrapolation were found by Vastano & Moser 
(1991) in exponent calculations of Taylor-Couette flow near the turbulent transition, 
but Sirovich & Deane (1991) employed the method successfully in their exponent 
calculations in BBnard convection. Problems in extrapolation appear to be associated 
with the substantial variability of the local exponents from one orthonormalization 
to the next in the two shear flow cases. Time histories of exponents in BBnard 
convection are much smoother. 

Aside from the basic ability to accurately integrate the Navier-Stokes equations 
in time for the channel flow, the other crucial component of the exponent algorithm 
is the repeated orthonormalization of separation vectors between the base flow and 
the perturbations. The GramSchmidt procedure is well known to be ill-conditioned 
under certain circumstances, and gets progressively worse as the number of mutually 
orthogonal vectors sought increases. Less ill-conditioned is the modified Gram- 
Schmidt procedure used here, but ultimately the only way to check for independence 
is to construct inner products between each pair of vectors. Since the ortho- 
gonalization was conducted in single-precision (64-bit) arithmetic, the inner product 
must be calculated in double precision to be a true indicator. Such an operation was 
performed at 52 evenly spaced intervals in the Atu,/L = 0.0015 calculation during 
the time that all 450 exponents were being calculated. At  each interval the 
i(450 x 449) = 101 025 possible normalized inner products between all pairs of 
vectors were calculated. The 5.25 million numbers so obtained are histogrammed in 
figure 9. The maximum value of any normalized inner product (cosine of the angle 
between vectors) during the entire interval was less than 2-36 (3 x lo-"), with 84% 
of the values less than ZS9 (2 x 10-l2), While these values are not machine zero they 
are small enough to erase any doubts that the modified GramSchmidt procedure 
used in the orthogonalization was inadequate to the task. It should be remembered 
that the dimension of the vector space in which the orthogonalization occurred was 
6930. The 450 vectors span only 6.5% of the possible directions in this space. Thus 
if one ignores a certain accumulation of round-off error as the absolute number of 
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FIGURE 9. Lyapunov vector orthogonality statistics obtained from the 450 exponent calculation 
using Atu,/L = 0.0015 

vectors increases, orthogonalizing 450 vectors out of 6930 should present no more 
problems than 2 out of 32, and this latter hardly seems a formidable task. 

4.2. Medium and high spatial resolution 
Finite computational resources balanced against the number of simultaneous flow 
simulations required to obtain the dimension estimates described in the previous 
section mandated that each simulation be coarse grained spatially. As shown in $3  
the statistics of such simulations (stress, turbulence intensity, and velocity profiles) 
display some departures from those of experiments and more highly resolved 
simulations (Kim et al. 1987) a t  similar, though higher, Reynolds numbers. Such 
departures in statistics are often taken to indicate that the flow being simulated is 
not ‘true’ turbulence. On the other hand, wavenumber spectra and distributions 
calculated on higher-resolution grids (16 x 33 x 16 and 32 x 33 x 32) in this spatial 
domain fare better in such comparisons. What are the corresponding changes in the 
Lyapunov exponent spectra and Kaplan-Y orke dimension as more lengthscales are 
included and ‘true ’ turbulence is approached. Does the dimension go up or down ? 
Does its value asymptote as resolution increases ? Unless this latter question can be 
answered affirmatively, the ‘ finiteness ’ of the attractor dimension calculated will be 
completely spurious. To answer these questions, exponent calculations were 
performed a t  the two higher spatial resolutions. In  neither case did we obtain 
sufficient numbers of exponents to apply the Kaplan-Yorke formula directly. 
However, in the medium-resolution case we calculated all the positive exponents, 
and they confirmed a scaling relation for spectrum shape versus resolution that 
allowed us to estimate the dimension a t  this and higher resolutions when only part 
of the exponent spectrum is available. 

In two previous studies of chaotic solutions to  partial differential equations 
(Manneville 1975; Keefe 1989), as well as one study of a large system of ordinary 
differential equations (Yamada & Ohkitani 1988) the investigators found that the 
Lyapunov exponent spectra of each system were collapsed by normalization of the 
exponent values by the ratio N,/h, ,  and their indices by l / N 2 .  Here N ,  is the 
number of non-negative exponents, and h, (an upper bound on the metric entropy) 
equals the sum of these exponents. In each case, this scaling was observed as a 



23 

) 

6 0 .'2 5 0.'50 0 .'7 5 I .oo 
j / N ,  

FIQURE 10. Normalized Lyapunov exponent spectra from coarse (O) ,  and medium (A) 
resolution calculations. 

control parameter in the equations (effectively, the Reynolds number) became large, 
and the number of computational modes in the calculation increased. Related to this 
same scaling is the use by Sirovich & Deane (1991) of a linear extrapolation technique 
to estimate the attractor dimension in BBnard convection when sufficient exponents 
could not be calculated. 

This same scaling was found to hold here where the Reynolds number was fixed, 
but the number of computational modes was doubled. On a 16 x 33 x 16 grid the first 
380 exponents were calculated. This number was judged just sufficient for the values 
of A, to become negative, and we estimate N ,  = 368. Figure 10 shows this partial 
spectrum, along with the first 166 exponents of the coarse-grained case plotted in 
normalized form. Except for some differences below j / N  < - 0.15, which are in part 
attributable to  incompletely converged exponents in the medium-resolution case, the 
two normalized spectra are the same. Given the shape similarity of normalized 
spectra, the attractor dimension is proportional to the number of positive exponents. 
Thus for this medium resolution calculation we estimate D, - (#) x 352 - 780. 
Doubling the spanwise resolution of the simulation has more than doubled the 
dimension of the underlying attractor. One additional exponent spectrum, a t  still 
higher resolution, was obtained in an effort to determine if further dimension 
increases occur. In this case, we calculated estimates of the first 63 exponents from 
a 32 x 33 x 32 simulation. Figure 11 shows these exponents, along with their 
counterparts from the medium- and coarse-grained simulations, in unscaled form. 
Because of the small number of exponents calculated a t  this highest resolution, and 
their scatter due to incomplete convergence, we cannot make a strong statement that 
the dimension does not increase again. However, our experience watching the other 
exponent spectra converge over long calculation times certainly convinces us such an 
increase could only be small. Even incompletely converged, the high-resolution 
spectrum pictured in the figure is parallel to, and tending towards coincidence with, 
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the medium-resolution spectrum. Given the shape similarity of spectra, this is 
indicative, though weak, evidence that the attractor dimension asymptotes to value 
near D, = 780. If such near coincidence of the exponents were to be demonstrated for 
larger sections of the spectra, this last statement would be made conclusive. 
Unfortunately the task of calculating the estimated 400 non-negative exponents a t  
high resolution needed to resolve this question is beyond reasonable computation a t  
this time. We are confident that  the attractor dimension on this computational 
domain is a t  least D, = 780 ; the evidence available suggests to us that its asymptotic 
value for a completely resolved turbulent flow is not much greater. 

4.3. Predictions for the spectrum shape 

Very little can be predicted about the shape of the Lyapunov exponent spectrum for 
an arbitrary dynamical system. However, we know of two such predictions for the 
NavierStokes equations. The first, due to Ruelle (1982), concerns the shape of the 
spectrum near A, = 0; the second, due to Constantin, Foias & Temam (1985), 
concerns its asymptotic shape for j + co . 

Ruelle’s work predicts the possibility that the exponent distribution is tangent to 
the line A, = 0, provided the /3-model of Frisch, Sulem & Nelkin (1978) is assumed for 
the dissipation E .  The /3-model assumes e to have its support on a fractal set of dimen- 
sion a; there is now evidence from experiments (Meneveau & Sreenivasan 1987) and 
numerical calculation (Keefe & Deane 1989 ; Hosokawa & Yamamoto 1990) that 8 is 
a multifractal, finding support on a continuous distribution of fractal sets of varying 
dimension. The modifications to Ruelle’s analysis needed to  include these new data 
have not been made. It can be seen from the exponent spectra in figure 7 that the 
exponent distribution in low-Reynolds-number Poiseuille flow does not have a 
tangency at  the prescribed place. 

Constantin et al. (1985) predict the asymptotic shape of the exponent distribution 
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M 
FIGURE 12. Summation of first M = 800 exponents, coarse-grained simulation, compared to 

predicted Ad behaviour for large numbers of exponents. 

by an argument based on bounds to the distribution of the eigenvalues of the Stokes 
operator in the NavierStokes equation. Shorn of the various technical arguments 
that lead up to it, this prediction takes the form 

(4.12) 

To test the exponent spectra against this bound we returned to the coarse-grained 
simulation and added an additional 350 exponents to the calculation, obtaining 
estimates of the first 800 exponents. The absolute value of the sum of exponents is 
plotted in figure 12 on log-log axes along with a line that corresponds to ik@ 
behaviour. It first must be said that M = 800 does not apparently constitute a large 
enough index for true asymptotic behaviour to appear. However, that part of the 
exponent distribution that is available does not violate the bound, and is tending 
towards the predicted behaviour. 

5. Implications of these results 
The results described above have important implications for many current studies 

of fluid turbulence. Foremost, we believe that we have supplied strong evidence that 
solutions to the NavierStokes equations for turbulent channel flow are confirmed to 
a finite-dimensional strange attractor, and thus temporal chaos in this representative 
shear flow results from the ' sensitive dependence ' mechanism intrinsic to such 
attractors. This suggests a new mathematical context for turbulence studies, 
different from the Reynolds-averaged and statistical approaches. The structure of 
turbulence now means not only its visible, three-dimensional manifestation, but also 
the largely obscure, higher-dimensional fractal structure of its underlying attractor. 
It is in this latter context that the unpredictability of turbulent flow, as well as its 
approximate recurrent structure in time and space can now be understood as the 
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result of a competition, never resolved, between ubiquitous local instability and 
global boundedness. These are new insights, inaccessible from previous methods of 
study. 

Though the dimension of the attractor in the current study is finite, its magnitude 
places this dynamical system in an entirely different class from those analysed 
experimentally in the BQnard or Taylor-Couette problems. For experimentalists the 
news is largely negative, for no available method of calculating dimension from 
measured data can handle a dimension so high. The number of points required for the 
' correlation ' dimension, if the scaling region is to extend over only a factor of 2, is 

! A billion points would give a scaling region within a radius variation of only 
3 %. Thus there was no chance that the previous attempts to calculate dimension by 
these methods could have succeedcd. For those seeking a simplification of the 
turbulence problem by decomposing the flow onto special bases the resultant 
dynamical system is still likely to be too complex for analysis. Simply extracting the 
fixed points of a 780th-order system is a non-trivial task, and the subsequent analysis 
of phase-space orbits in tcrms of these singularities is daunting even to contemplate. 
Thus it seems unlikely, given the dimension of the attractor, that  even a 100-mode 
truncation could get the basic, qualitative dynamics of the full system correct. Under 
these conditions a more local approach to decomposition (Lumley 1981 ; Aubry et al. 
1988) seems to hold promise. 

Dynamical systems theory has provided the tools and arguments to demonstrate 
that turbulence is finite-dimensional. This dimension is large, but not infinite. The 
infinite can induce an intellectual paralysis that may discourage the search for new 
analysis techniques. Our demonstration that a well-known shear flow has finite 
degrees of freedom should help to dissipate this paralysis. Others have long since 
embraced these notions and staked out new territory in the study of finite- 
dimensional reductions of formally infinite-dimensional systems (Sirovich & 
Rodriguez 1987; Aubry et al. 1988: Foias et al. 1988; Kevrekidis, Nicolaenko & 
Scovel 1990 ; Rodriguez & Sirovich 1990). The older Karhunen-LoQve approach has 
recently been linked to  the newer study of inertial manifolds. Sirovich, Knight & 
Rodriguez (1990) have shown that the calculation of an approximate inertial 
manifold for a p.d.e. is equivalent to performing the Karhunen-LoQve procedure on 
the time derivative of its solution, rather than on the solution itself. The usual 
Karhunen-Lokve procedure produces a basis set that  optimally captures the mean- 
square projection of the amplitude of the system ; calculating an approximate inertial 
manifold produces a basis set that optimally captures the mean-square projection of 
the time derivative. In a t  least one example i t  has been shown that for similar 
accuracy in describing the bifurcation structure and dynamics of the solution the 
latter approach produces a smaller set of differential equations than the traditional 
approach. Our results should encourage the further application of these techniques 
to  the Navier-Stokes equations. 

6. Conclusions 
Using numerical simulations to calculate Lyapunov exponent spectra, the 

dimension of the strange attractor underlying periodic, fully developed, turbulent 
Poiseuille flow at a pressure-gradient Reynolds number of 3200 on a particular 
computational domain has been estimated to be D, - 780. A spatially coarse-grained 
calculation (16 x 33 x 8) established a lower bound of D, - 352. I n  this simulation 
sufficient of the Lyapunov spectrum was calculated for a direct application of the 
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Kaplan-Yorke formula for dimension. A t  medium spatial resolution (16 x 33 x 16) 
the full spectrum necessary for application of the Kaplan-Yorke formula could not 
be obtained owing to computational constraints. However, a calculation of the non- 
negative exponents (some 368 of them) showed that Lyapunov spectra display a 
universal shape in this flow, as resolution increases, when normalized using the 
number of non-negative exponents N ,  and the metric entropy, hp. On this basis the 
dimension of the underlying attractor was estimated to be D, - 780 at the medium 
resolution. A small segment of exponent spectra calculated when streamwise and 
spanwise resolutions were further doubled (32 x 33 x 32) supports the contention that 
the asymptotic value of the dimension in fully resolved turbulence is not likely to be 
much larger. 

These results demonstrate that fully developed channel flow is deterministic chaos 
confined to a strange attractor, and that temporal unpredictability in this 
representative bounded shear flow is due to the exponential spreading property 
integral to such attractors. The magnitude of the estimated dimension destroys any 
possibility that the global dynamics of this fully developed flow can be attributed to 
the interaction of 'a few degrees of freedom '. This distinguishes Poiseuille flow from 
either BBnard convection or Taylor-Couette flow. 

A switch to a new mathematical context for studies of fully developed turbulence 
is supported by these results, one that is quite separate from the Reynolds-averaged 
or statistical viewpoints. The linear methodology of Fourier transformations inherent 
in the latter has provided many insights into turbulence phenomena in the last half 
century, but only the nonlinear viewpoint, objectified in the strange attractor, could 
suggest the mechanism and origin of temporal disorder, the feature that has made 
the averaged and statistical points of view a necessity until now. The new viewpoint 
is a geometrical one, but forces us to think in spaces of dimension greater than a 
comfortable three, where entire flow fields are represented by a single point. Such a 
shift in thinking will not be easy. However, the potential benefit seems large. The 
physical phenomena of turbulence must find echo or origin in the mathematical 
structure of its underlying attractor. The study of the mathematical properties of 
these attractors should provide not only a framework for what we already know but 
predict things we do not. 
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